10.3969/j.issn.1002-6819.2015.03.026
基于HJ时间序列数据的农作物种植面积估算
通过对长时间序列遥感影像的波谱变化特征分析,可以有效地进行农作物种类识别与信息提取,提高农作物种植面积的遥感监测精度。中空间分辨率多光谱遥感影像适合于中国大范围大宗农作物面积监测,也是能够提供稳定时间序列遥感数据源之一。该研究以河北省衡水市为研究区域,采用2011年10月3日-2012年10月24日期间,16景30 m空间分辨率的HJ-1A/B卫星CCD(电荷耦合元件,charge-coupled device)影像月度NDVI(归一化植被指数,normalized difference vegetation index)时间序列数据,针对冬小麦、夏玉米、春玉米、棉花、花生和大豆等主要作物类型,在全生育期波谱特征曲线分析基础上,提取主要作物类型的曲线特征,采用基于 NDVI 阈值的决策分类技术,进行了农作物种植面积遥感识别,以15个规则的2 km×2 km的地面实测GPS(全球定位系统,global positioning system)样方进行了精度验证。考虑到大豆和花生2种作物的NDVI时间序列特征相似性较高,将这2种作物合并为一类进行分类,并命名为小宗作物。结果表明,冬小麦、夏玉米、春玉米、棉花和小宗作物等5类目标可以有效识别,分类总体精度达到90.9%,制图精度分别为94.7%、94.7%、82.4%、86.9%和81.2%,其他未分类类别精度为85.9%。利用中高分辨率遥感时间序列卫星影像,在大宗农作物时间序列的变化规律分析基础上,可以准确地提取大宗农作物种植面积,在农作物面积资源调查中具有较大的应用潜力。
遥感、农作物、决策树、分类、环境卫星、时间序列、作物面积
S252+.9(农业航空)
国家高技术研究发展计划863计划;典型应用领域全球定量遥感产品生产体系2013AA12A302。
2015-03-25(万方平台首次上网日期,不代表论文的发表时间)
共8页
199-206