10.3969/j.issn.1002-6819.2014.22.022
高光谱成像技术快速检测生物质秸秆元素含量
为了探讨生物质秸秆元素含量的快速检测方法,该文运用高光谱成像技术,结合多种数据优选方法对生物质秸秆中N、C、H、S、O元素含量快速检测的可行性进行研究。选取玉米、水稻、小麦、油菜4种类别共计188个秸秆样本,采集其反射高光谱图像,并测定元素含量。采用竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)算法选取元素检测敏感变量,提取光谱维数据,结合偏最小二乘(partial least squares, PLS)算法,建立了基于高光谱光谱维数据的元素定量分析模型,N元素采用24个变量建立模型,验证集相关系数为0.923,均方根误差(root mean square error of validation set,RMSEP)为0.196%,相对分析误差(relative analysis error,RPD)为3.11;O元素仅采用10个光谱变量建立模型,验证集相关系数为0.876,均方根误差为1.015%,相对分析误差为2.32,N、O元素的模型可以用于实际应用;C、H、S元素相验证集相关系数均小于0.80,无法实际应用分析。采用独立成分分析(independent component analysis,ICA)算法结合权重系数法,提取IC1-IC5分析图像中特征光谱波段为572.09、643.69、685.14、766.79、819.55、964.01 nm,用6个特征光谱变量建立基于高光谱图像维数据的秸秆元素定量分析模型,N、C、H、S和O 5种元素无法用于实际检测。研究结果表明,采用高光谱成像技术并应用光谱维数据结合CARS-PLS算法可以实现秸秆N、O元素的有效检测。
秸秆、光谱分析、图像处理、元素分析、高光谱成像技术、数据优选
S216.2;TP391.4(农业动力、农村能源)
国家公益性行业农业科研专项201003063-04
2015-01-04(万方平台首次上网日期,不代表论文的发表时间)
共7页
181-187