高光谱成像技术快速检测生物质秸秆元素含量
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2014.22.022

高光谱成像技术快速检测生物质秸秆元素含量

引用
为了探讨生物质秸秆元素含量的快速检测方法,该文运用高光谱成像技术,结合多种数据优选方法对生物质秸秆中N、C、H、S、O元素含量快速检测的可行性进行研究。选取玉米、水稻、小麦、油菜4种类别共计188个秸秆样本,采集其反射高光谱图像,并测定元素含量。采用竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)算法选取元素检测敏感变量,提取光谱维数据,结合偏最小二乘(partial least squares, PLS)算法,建立了基于高光谱光谱维数据的元素定量分析模型,N元素采用24个变量建立模型,验证集相关系数为0.923,均方根误差(root mean square error of validation set,RMSEP)为0.196%,相对分析误差(relative analysis error,RPD)为3.11;O元素仅采用10个光谱变量建立模型,验证集相关系数为0.876,均方根误差为1.015%,相对分析误差为2.32,N、O元素的模型可以用于实际应用;C、H、S元素相验证集相关系数均小于0.80,无法实际应用分析。采用独立成分分析(independent component analysis,ICA)算法结合权重系数法,提取IC1-IC5分析图像中特征光谱波段为572.09、643.69、685.14、766.79、819.55、964.01 nm,用6个特征光谱变量建立基于高光谱图像维数据的秸秆元素定量分析模型,N、C、H、S和O 5种元素无法用于实际检测。研究结果表明,采用高光谱成像技术并应用光谱维数据结合CARS-PLS算法可以实现秸秆N、O元素的有效检测。

秸秆、光谱分析、图像处理、元素分析、高光谱成像技术、数据优选

S216.2;TP391.4(农业动力、农村能源)

国家公益性行业农业科研专项201003063-04

2015-01-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

181-187

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2014,(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn