多光谱低空遥感图像光照辐射度校正
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2014.19.024

多光谱低空遥感图像光照辐射度校正

引用
为了提高受云层阴影影响的遥感图像的信息提取准确度,该文以水稻小区试验过程中为进行氮素水平检测而采集的低空机载高分辨率多光谱遥感图像为对象,对受云层阴影影响的高光谱图像进行光谱校正,从而提高氮素水平检测的精度。试验中采用机载的双摄像机同步采集可见光和近红外的水稻遥感图像,并将两摄像机的图像进行几何校正后合成得到彩红外(color infrared, CIR)光谱图像;同时在图像采集区域布置3块不同反射率的1.2 m×1.2 m标定靶,利用便携式光谱仪测定标定靶的反射光谱曲线,并统计标定靶在图像中各通道的亮度均值。以标定靶在晴天无云和有云图像中的亮度值为节点,对G、R和近红外(near infrared, NIR)通道分别建立分段的线性变换模型进行校正。为验证校正精度,在遥感图像中分别选择大田水稻、小区试验田块和裸地3个不同区域的图像的 G、R 和 NIR 通道像素亮度均值及归一化植被指数(normalized differential vegetation index, NDVI)作为评价指标。试验结果表明,和传统的整体线性变换相比,采用分段线性变换校正具有较高精度,G、R和 NIR通道校正后的平均误差为8.6%,9.1%和11.7%,NDVI平均误差为11.5%,有效提高了阴影条件下的遥感图像的信息提取精度,提高了受云层影响遥感图像的利用率。研究为低空遥感的图像校正提供了参考。

遥感、监测、图像处理、多光谱图像、光谱校正、光照辐射度、氮素监测、去云

S127;P407.8(农业物理学)

“十二五”国家863计划项目SS2013AA100303,2012AA101901-3

2014-12-04(万方平台首次上网日期,不代表论文的发表时间)

共8页

199-206

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2014,(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn