基于叶片图像和环境信息的黄瓜病害识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2014.14.019

基于叶片图像和环境信息的黄瓜病害识别方法

引用
作物病害严重影响着作物的产量和质量,病害类型识别是病害防治的前提。利用图像处理和统计分析,提出了一种基于病害叶片图像和环境信息的黄瓜病害类别识别方法。采集不同季节、温度和湿度等环境下的病害叶片图像,并记录病害的环境信息;利用属性约简法提取病害叶片的5个环境信息特征向量,对病害叶片图像进行一系列图像处理,提取病斑图像的颜色、形状、纹理等35个统计特征向量。将两者结合得到黄瓜病害的40个特征分量。再利用统计分析系统(statistical analysis system,SAS)的判别分析方法,选择10个分类能力强的特征分量,计算作物病害的聚类中心分类特征向量。最后,利用最大隶属度准则识别病害叶片的病斑类别。对黄瓜的霜霉病、褐斑病和炭疽病3种叶部病害的识别率高达90%以上。试验结果表明,该方法能够有效识别作物叶部病害类别,可为田间开放环境下实现作物病害的快速自动识别提供依据。

病害、判别分析、图像识别、环境信息、黄瓜

TP391(计算技术、计算机技术)

国家自然科学基金项目61272333;陕西省教育厅自然科学研究项目2013JK1145

2014-08-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

148-153

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2014,(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn