基于反射光谱预处理的苹果叶片叶绿素含量预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2014.14.018

基于反射光谱预处理的苹果叶片叶绿素含量预测

引用
以苹果叶片叶绿素含量为研究对象,定量研究了光谱数据预处理方法对光谱特征提取及叶绿素含量预测模型的影响。首先,比较了苹果叶片原始反射率光谱、小波包去噪反射率光谱、反射率一阶差分光谱、先小波包去噪后一阶差分光谱、先一阶差分后小波包去噪光谱这5种光谱的波段间相关系数以及光谱与叶绿素含量间的相关系数,建立了叶绿素含量预测逐步回归模型并对建模结果进行了比较分析。结果表明单纯3层sym8小波包去噪可使光谱曲线平滑,但不会明显提高模型精度;一阶差分虽然放大了局部噪声,但是消除了基线漂移影响,可提高模型精度;先差分后小波包去噪比先小波包去噪后差分具有更高的峰值信号噪声比,更低的均方误差与最大误差,建模结果也显示出同样的结果。因此,先差分后小波包去噪算法可认为是一种有效的苹果叶片叶绿素含量预测光谱预处理方法。利用这一方法建立了苹果叶片叶绿素含量预测模型,获得了较高的预测精度。该研究可用于对苹果树营养状态的评价并指导按需施肥。

叶绿素、特征提取、小波分析、小波包去噪、差分、光谱特征、苹果叶片

S24;S127(农业电气化与自动化)

国家“863”计划项目2013AA102303

2014-08-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

140-147

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2014,(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn