10.3969/j.issn.1002-6819.2014.12.016
基于高光谱成像的苹果虫害检测特征向量的选取
利用高光谱成像技术,明确苹果虫害无损检测的最优特征向量,以实现对苹果虫害的快速、准确、无损检测。本文首先对646 nm波长的特征图像进行阈值分割、膨胀与腐蚀运算获得掩膜图像,并利用掩模图像对高光谱图像进行掩模和主成分分析,对获得的PC1(the first principal component,第一主成分)图像进行最大熵阈值分割以有效提取虫害区域。然后对比分析虫害区域与正常区域图像的纹理特征,提取灰度共生矩阵的4个方向的4个纹理参数(能量、熵、惯性矩和相关性),并且采用基于高光谱图像的光谱差值获取了2个特征波长对应的光谱相对反射率作为光谱特征。优化组合纹理特征和光谱特征成4个特征向量组,采用BP(back propagation,反向传播)神经网络对正常苹果和虫害苹果进行检测。结果表明,融合0度方向的能量、熵、惯性矩和相关性的纹理特征和646、824 nm波段的相对光谱反射率的光谱特征进行检测识别效果最好,正常果的识别率为100%,虫害果的识别率为100%,并且速度快、误差小。该研究所获得的特征向量可为开发多光谱成像的苹果品质检测和分级系统提供参考。
无损检测、主成分分析、图像处理、光谱特征、高光谱成像
TP391.41;TP274+.52(计算技术、计算机技术)
农业部公益性行业农业科研专项资助项目201103024;辽宁省教育厅科学技术研究资助项目L2011114
2014-07-15(万方平台首次上网日期,不代表论文的发表时间)
共8页
132-139