基于光谱学原理与小波包分解技术预测苹果树叶片氮素含量
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2013.z1.015

基于光谱学原理与小波包分解技术预测苹果树叶片氮素含量

引用
为探索不同生理物候期苹果树叶片氮素含量的快速检测方法.分别在果树坐果期、生理落果期和果实成熟期,使用光谱仪测量了果树叶片在可见光和近红外区域的反射光谱,同时在实验室测定了果树叶片的全氮含量.研究首先将实验所得的光谱反射率与氮素含量以果树为单位进行聚类,利用小波包分析技术对每棵果树的光谱信息进行分解,提取出的低频信号和去除高频噪音后的信号分别组成了低频全光谱和去噪全光谱.针对这两个全光谱均实施了主成分分析,利用提取主成分分别建立了果树不同生长阶段的氮素含量多元线性回归模型.对比基于归一化植被指数(NDVI)建立的氮素含量估测模型发现,利用全光谱信息建立的氮素含量预测模型精度更高;在坐果期和果实成熟期,使用去噪全光谱提取的主成分建立的氮素预测模型最优;而在生理落果期,使用低频全光谱提取的主成分建立的模型最优.结果表明,利用小波包分析技术能够有效地提高苹果果树叶片氮素含量的光谱预测能力.

氮素、主成分分析、光谱仪、苹果叶片、小波包分解、NDVI、多元线性回归

O657.3;S126(分析化学)

2013-06-19(万方平台首次上网日期,不代表论文的发表时间)

共8页

101-108

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn