10.3969/j.issn.1002-6819.2013.21.016
水稻遥感识别偏差修正的地统计学方法
为了进一步提高农作物遥感识别精度,充分利用高分辨率遥感影像上不同地物之间的邻域空间关系,提出农作物遥感识别偏差修正的地统计学方法。该方法综合考虑目标地物的光谱特征与空间信息,以类别隶属度偏差为研究对象,首先利用类别指示向量和类别后验概率向量之间的差异实现目标地物的类别隶属度偏差量化,然后对训练样本的类别隶属度偏差进行变异函数建模,并采用带局部均值的简单克里格插值方法预测总体类别隶属度偏差,之后用总体偏差的预测值对光谱分类所得的类别后验概率进行修正,重新确定识别结果,实现农作物遥感识别的偏差修正。以安徽省南部的一景 SPOT-5影像覆盖范围为研究区,选择2块典型区域分别作为试验区和验证区,以一季稻和晚稻为目标农作物,以支持向量机作为光谱分类的分类器,建立了水稻遥感识别的偏差修正流程;采用地面实测数据对修正效果进行评估,并与最大似然分类、模糊分类和支持向量机分类的结果进行比较。试验结果表明,该方法的总体分类精度能够达到90%以上,与传统分类方法相比,总体精度提高了近14%;且该方法能够大幅提高一季稻和晚稻的生产者精度和用户精度,有效改善了研究区的水稻识别结果,可以为中国南方复杂种植条件下的水稻识别提供参考。
遥感、识别、算法、类别隶属度、变异函数、克里格插值、偏差修正、水稻
TP79;S127(遥感技术)
高分辨率对地观测重大专项农业遥感监测与评价子系统一期项目GF13/15-311-003
2013-10-24(万方平台首次上网日期,不代表论文的发表时间)
共11页
126-136