基于EMD和MLEM2的滚动轴承智能故障诊断方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2011.04.021

基于EMD和MLEM2的滚动轴承智能故障诊断方法

引用
针对旋转机械的自主故障诊断,提出一种基于EMD和MLEM2的智能解决方法.利用EMD预处理振动信号,在最适合的IMF分量上提取6个时域指标和5个频域指标构成无量纲的轴承故障特征向量.根据设备运行数据形成决策表,使用改进的MLEM2算法挖掘诊断规则,再结合改进的规则匹配策略进行状态识别.EMD能够剥离故障最本质的信息,提高所选分量的信噪比,而MLEM2算法无需对连续属性事先离散化,获得的诊断规则更完备、准确.SKF6203轴承试验表明,该方法诊断精度达到93.75%,相当于能够自主获取知识的专家系统,且只要一次初始设定,无需后续人工干预,是一种有效的智能诊断方法.

轴承、故障诊断、模型、经验模式分解、规则获取、MLEM2算法

27

TP2006(自动化技术及设备)

江苏省自然科学基金BK2009356;江苏省高校自然科学研究项目09KJB510003

2012-07-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

125-130

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

27

2011,27(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn