苹果质地品质近红外无损检测和指纹分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:1002-6819.2008.06.035

苹果质地品质近红外无损检测和指纹分析

引用
为了探索近红外光谱快速无损检测苹果质地品质的方法,采集240个苹果样本的近红外光谱( 波长 8002500 nm),通过解析光谱图和进行不同的预处理,利用偏最小二乘法(PLS)和多元线性回归(MLR)建立回归模型和确定特征指纹图谱.基于波长范围为1300~2500 nm,PLS结合多元散射校正(MSC)所建模型的预测效果最好,硬度模型的预测标准偏差(RMSEP)和决定系数(R2)分别为0.226 kg/cm2、96.52%,脆度模型的 RMSEP和R2分别为0.243 kg/cm2、97.15%.用权重法基于PLS模型选择的硬度特征波长为1657、1725、1790、2455、1929、2304 nm,脆度特征波长为1613、1725、1895、2304、2058、2087、2396 nm,经MLR模型检验,特征波长与苹果的硬度和脆度有很高的相关性,硬度的RMSEP和R2分别为0.271 kg/cm2、90.30%,脆度的RMSEP和R2分别为0.304kg/cn2、91.64%.结果表明,PLS模型和特征指纹光谱均能准确预测苹果的质地品质,为苹果质地品质的评价提供了快速、直观、简便、可行的新方法.

苹果、脆度、硬度、近红外光谱、无损检测、指纹图谱

24

S123;TS255.3(农业物理学)

国家"十一五"科技攻关项目2006BAK02A24

2008-09-01(万方平台首次上网日期,不代表论文的发表时间)

共5页

169-173

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

24

2008,24(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn