基于主成分和云模型的冬小麦种植信息提取方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19998/j.cnki.2095-1795.2022.11.007

基于主成分和云模型的冬小麦种植信息提取方法

引用
在对Sentinel-2卫星遥感影像进行预处理的基础上,利用主成分变化提取小麦主要信息,基于云模型算法开展光谱遥感图像分类.分类时,首先根据训练样本集,由逆向云发生器生成典型小麦的云模型,然后利用云发生器计算出各波段每个象元对小麦地物的平均隶属度,在对各波段的隶属度分析基础上,摒弃含有复杂信息的第1主成分,利用第2主成分和第3主成分信息实现对冬小麦种植空间信息的提取.结果表明,提取小麦种植信息制图精度和用户精度分别为92.78%和99.90%,小麦种植田块的隶属度值因小麦长势和密度的不同有较大的差异,云模型对长势较差、密度较低的小麦像元存在漏分现象.基于云模型的算法精度极高,对小麦地块的识别错分、漏分现象少.该模型有助于冬小麦种植面积的精确提取,对于农业部门进行冬小麦生长监测与产量估测有重要的支撑作用.

主成分、云模型、小麦、种植信息

12

S162.5(农业气象学)

中国气象局创新发展专项;中国气象局中央财政乡村振兴气象服务专项

2023-03-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

37-43

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程

2095-1795

11-6025/S

12

2022,12(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn