ANN 、ANFIS 和 AR 模型在日径流时间序列预测中的应用比较
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13476/j.cnki.nsbdqk.2016.06.003

ANN 、ANFIS 和 AR 模型在日径流时间序列预测中的应用比较

引用
水文预测是水文学为经济和社会服务的重要方面。其预报结果不仅能为水库优化调度提供决策支持,而且对水电系统的经济运行、航运以及防洪等方面具有重大意义。自回归模型(AR模型)、人工神经网络(ANN)和自适应神经模糊推理系统(A N FIS )在日径流时间序列中应用广泛。将这三种模型应用于桐子林的日径流时间序列预测中,不仅采用纳什系数(NS系数)、均方根误差(RMSE)和平均相对误差(MARE)为评价指标,对三种模型的综合性能进行了比较。而且,在对三种模型预测结果的平均相对误差的阈值统计基础上,分析了三种模型的预测误差分布。同时,通过研究模型性能指标随预见期的变化过程评价了三种模型不同预见期下的预测能力。结果表明 AN‐FIS相对于A N N和A R模型不仅具有更好的模拟能力、泛化能力,而且在相同的预见期下具有更优的模型性能,可以作为日径流时间序列预测的推荐模型。

自回归模型、人工神经网络、自适应神经模糊推理系统、日径流时间序列预测

14

P338(水文科学(水界物理学))

“十二五”国家科技支撑计划项目2013BAB05B00 Fund12th Five-Year Science and Technology Support Program 2013BAB05B00

2016-11-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

12-17,26

相关文献
评论
暂无封面信息
查看本期封面目录

南水北调与水利科技

1672-1683

13-1334/TV

14

2016,14(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn