基于组合深度模型的现代汉语数量名短语识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-4616.2022.01.018

基于组合深度模型的现代汉语数量名短语识别

引用
数量名短语的识别是识别由数量短语修饰的名词短语左右边界的研究.以往研究中,基于统计学习模型的数量短语识别方法依赖人工特征,需要通过专家知识构建知识库来实现对"数词+量词"短语的识别.本文在以往研究基础上纳入"名词"形成"数词+量词+名词"等八类数量名短语,并采用深度学习方法解决这一边界识别任务.通过BERT模型对原始文本进行上下文特征表示,利用Lattice LSTM模型字词结合的思想将标准分词作为软特征融入文本字符级的特征表示中,最后通过CRF全局约束识别数量名短语边界.实验结果表明,本文方法在AMR语料上达到较优结果,精确率、召回率、F1值分别为80.83%,89.78%,85.07%.

数量名短语识别,BERT,Lattice LSTM;CRF

45

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家社会科学基金

2022-03-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

127-135

相关文献
评论
暂无封面信息
查看本期封面目录

南京师大学报(自然科学版)

1001-4616

32-1239/N

45

2022,45(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn