智能网格SCMOC及多模式降水预报对比
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13878/j.cnki.dqkxxb.20220213001

智能网格SCMOC及多模式降水预报对比

引用
以三源融合网格实况降水分析资料CMPAS为参照,基于二分法经典检验、预报评分综合图和面向对象MODE检验等方法,对比分析2021年智能网格预报SCMOC以及ECMWF全球、CMA-Meso中尺度模式在秦岭及周边地区的降水预报表现,主要结论如下:1)ECMWF能够很好地刻画日平均降水量、日降水量标准差以及地形影响下降水量、降水频次的空间分布特征,但对于0.1 mm以上量级的降水预报频次远高于观测,暴雨预报频次低于观测,SCMOC、CMA-Mes0日降水量大于等于0.1 mm的降水频次和暴雨频次预报更好;SCMOC不足在于降水的空间精细分布特征描述能力相对较弱.2)ECMWF预报的大于等于0.1 mm降水频次日峰值出现时间整体较观测偏早3 h左右,CMA-Meso、SCMOC与观测总体吻合较好.3)三种产品24 h降水量大于等于0.1 mm的TS(Threat Score)评分数值上基本一致,但降水预报表现的特征显著不同,SCMOC成功率高、命中率低,漏报多、空报少,ECMWF、CMA-Meso则相反;24 h、3 h大雨以上量级降水SCMOC的TS评分、成功率、命中率一致优于其他两种产品.4)MODE暴雨检验,SCMOC大面积降水对象与观测相似度最高,预报能力优于ECM-WF,但分散性小面积暴雨对象漏报风险大.SCMOC、ECMWF纬向距离偏差大于经向,位置偏西比例高于偏东.

SCMOC、预报评分、降水检验评分综合图、MODE方法检验

46

P456;TP39;P228

中国气象局创新发展专项;中国气象局复盘总结专项;陕西省社会发展关键领域项目;陕西省自然科学基金资助项目

2023-06-09(万方平台首次上网日期,不代表论文的发表时间)

共13页

217-229

相关文献
评论
暂无封面信息
查看本期封面目录

大气科学学报

1674-7097

32-1803/P

46

2023,46(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn