中国冬季气温的集合典型相关分析和预报
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-7097.2007.05.006

中国冬季气温的集合典型相关分析和预报

引用
以欧亚大陆地面温度、北半球500 hPa高度、热带印度洋SST(sea surface temperature)以及北太平洋SST为预报因子,通过典型相关分析(canonical correlation analysis,简称CCA)建立预报关系,然后用集合典型相关分析预报(ensemble canonical correlation prediction,简称ECC)方法预报中国冬季气温,并分析预报技巧及进行独立样本检验.结果表明,不同的预报因子对各个地区有不同的预报技巧,以欧亚大陆地面温度为预报因子预报技巧较高,而ECC模式对中国冬季气温有更好的预报能力,预报技巧高于任何一个单因子场的CCA预报;采用回归法的集合平均比简单的等权集合平均预报技巧更稳定.

中国冬季气温、集合预报、典型相关分析、等权集合、回归集合

30

P456(天气预报)

江苏省重点实验室基金KLME060211

2007-12-17(万方平台首次上网日期,不代表论文的发表时间)

共9页

623-631

相关文献
评论
暂无封面信息
查看本期封面目录

南京气象学院学报

1000-2022

32-1164/P

30

2007,30(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn