基于卷积神经网络的P300脑电信号解码
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13232/j.cnki.jnju.2024.04.005

基于卷积神经网络的P300脑电信号解码

引用
P300拼写器是允许用户使用脑电图(Electroencephalogram,EEG)输入的脑机接口(Brain-Computer Interface,BCI)系统,高传输、高准确率地检测P300信号对于提高P300拼写系统的性能非常重要.针对P300脑电信号特征提取方式信噪比低、识别困难等特点,提出一种基于批量归一化和残差块的卷积神经网络(Convolutional Neural Network,CNN)模型,可以在模型训练中保留重要特征的同时加快模型损失的收敛速度.采用分类精度、AUC(Area under Curve)、准确率、召回率、F1-score等指标来验证所提模型的有效性,并与其他方法进行了对比实验.实验结果显示,与传统的CNN算法相比,所提模型的分类精度提升6%,损失函数的收敛速度也有提升;与传统机器学习方法相比,所提模型的各项评价指标都优于传统算法.证明该算法是提高P300拼写器性能的有效方法.

P300、机器学习、卷积神经网络、脑机接口

60

TP18;R318;TN911.7(自动化基础理论)

国家自然科学基金;国家自然科学基金

2024-09-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

577-585

相关文献
评论
暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

60

2024,60(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn