基于CNN-BiLSTM及ResNet网络的板中损伤TFM定位与检测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13232/j.cnki.jnju.2024.04.004

基于CNN-BiLSTM及ResNet网络的板中损伤TFM定位与检测研究

引用
针对全聚焦(Total Focusing Method,TFM)成像技术因其耗时长,在工业应用中受限的问题,提出一种基于CNN-BiLSTM(Convolutional Neural Network-Bi-directional Long Short-Term Memory)网络的快速 TFM成像方法,首先利用卷积神经网络从全矩阵数据中提取关键特征,接着结合双向长短期记忆网络来预测金属板上损伤的区域位置,再使用TFM技术在损伤区域进行精确成像.为了进一步提升损伤检测的准确性,引入基于ResNet网络的损伤尺寸检测方法以实现对损伤大小的精确检测.为了验证方法的有效性,利用有限元分析软件ABAQUS建立三维铝板仿真模型,并通过模型变换构建神经网络数据集.实验结果表明,与传统全聚焦成像方法相比,CNN-BiLSTM网络展现出较高的区域定位精度,定位准确率达到95.26%,并具有显著的效率优势,平均定位速度提升了 46.4%;同时,损伤尺寸大小的检测结果验证了基于ResNet网络的方法在损伤尺寸评估方面的有效性和准确性,在测试集上达到了 99.26%的准确率.

Lamb波、TFM、损伤检测、CNN-BiLSTM、ResNet

60

TB559(声学工程)

国家自然科学基金;江苏省研究生科研与实践创新计划项目

2024-09-29(万方平台首次上网日期,不代表论文的发表时间)

共11页

566-576

相关文献
评论
暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

60

2024,60(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn