特征表示增强的轻量化异常序列检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13232/j.cnki.jnju.2022.04.008

特征表示增强的轻量化异常序列检测方法

引用
边缘端的异常检测能够明显提高检测的响应速度,轻量化是深度异常检测模型在边缘端运行的解决方案,常采用模型压缩或减少参数量的方法,但参数量减少会减弱特征表示能力,影响检测准确度.为解决以上问题,提出一种层间特征传递增强的轻量化无监督异常序列检测方法,可以在减少模型参数量的同时保证检测的准确性.首先,借鉴密集卷积网络(DenseNet)的结构思想,设计特征层间连接的网络结构,增加层间的连接,加强特征传递的信息量,使提取的序列深度特征更充分;然后将深度可分离卷积应用到该网络结构中,减少参数量,实现轻量化;最后,用提取的序列特征训练支持向量描述分类器(Support Vector Data Description,SVDD),进行异常序列检测.分别在仿真数据集、Google云平台监控日志数据集和边缘端电力变压器油箱的温度数据集上进行验证,结果表明,提出的方法能准确地检测出不同变化的异常序列,与经典的轻量化网络相比,在准确率、参数量和速度上性能更好.

异常检测、轻量化、特征传递增强、深度可分离卷积

58

TP301(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;广西密码学与信息安全重点实验室研究课题;河南省高等教育教学改革研究与实践项目

2022-09-08(万方平台首次上网日期,不代表论文的发表时间)

共9页

640-648

相关文献
评论
暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

58

2022,58(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn