深度强化学习结合图注意力模型求解TSP问题
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13232/j.cnki.jnju.2022.03.006

深度强化学习结合图注意力模型求解TSP问题

引用
旅行商问题(Traveling Salesman Problem,TSP)是组合最优化问题(Combinatorial Optimization Problem,COP)中的经典问题,多年以来一直被反复研究.近年来深度强化学习(Deep Reinforcement Learning,DRL)在无人驾驶、工业自动化、游戏等领域的广泛应用,显示了强大的决策力和学习能力.结合DRL和图注意力模型,通过最小化路径长度求解TSP问题.改进REINFORCE算法,训练行为网络参数,可以有效地减小方差,防止局部最优;在编码结构中采用位置编码(Positional Encoding,PE),使多重的初始节点在嵌入的过程中满足平移不变性,可以增强模型的稳定性;进一步结合图神经网络(Graph Neural Network,GNN)和Transformer架构,首次将GNN聚合操作处理应用到Transformer的解码阶段,有效捕捉图上的拓扑结构及点与点之间的潜在关系.实验结果显示,模型在100-TSP问题上的优化效果超越了目前基于DRL的方法和部分传统算法.

深度强化学习、旅行商问题、图注意力模型、图神经网络、组合最优化

58

O22;TP18(运筹学)

国家自然科学基金11761042

2022-09-08(万方平台首次上网日期,不代表论文的发表时间)

共10页

420-429

相关文献
评论
暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

58

2022,58(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn