一种增强贝叶斯网络结构学习的自动变量序调整算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13232/j.cnki.jnju.2021.02.010

一种增强贝叶斯网络结构学习的自动变量序调整算法

引用
现有的混合结构学习算法受制于变量的邻居集,导致混合结构学习算法在约束学习阶段,若变量的邻居集没有包含真实结构的节点,该节点将再也不会被考虑.为改进这一问题,通过探索贝叶斯网络结构与节点影响度间存在的可能性关系,设计基于节点影响度的变量序调整方法并将调整后的变量序应用于网络结构学习.调整后的变量序在减少搜索空间的同时,也改善了传统约束空间过于依赖变量邻居集的问题,进而提升网络结构的学习质量.实验结果表明,该算法能有效地提升现有混合结构学习算法的精度,同时也验证了从节点影响度的角度去探索贝叶斯网络结构图的可行性.

贝叶斯网络结构、节点影响度、混合结构学习算法、变量序、约束空间

57

TP181(自动化基础理论)

江苏方天电力技术有限公司科技项目KJ201919

2021-06-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

255-261

相关文献
评论
暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

57

2021,57(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn