10.13232/j.cnki.jnju.2021.02.006
多特征融合的长时间目标跟踪算法
针对长时间运动目标跟踪中因目标严重形变、短暂离开视线、遮挡而引起的跟踪漂移或丢失问题,提出一个多特征融合的长时间目标跟踪算法.首先,提取图像的方向梯度直方图和纹理特征后,训练两个独立的特征模板,线性加权融合得出滤波模型.其次,设计一个存放高置信度跟踪结果的标签库,记录跟踪结果的位置信息、置信度、使用次数.最后,在跟踪漂移或失败时,结合EdgeBox产生的目标候选框,并快速从标签库中获取重新跟踪的初始帧,在线训练更新滤波模型,从而使算法在长时间跟踪时保持较高的鲁棒性和高效性.在公开数据集上与流行算法进行对比测试,证明该算法在距离准确率、跟踪成功率和鲁棒性方面优于其他对比算法.研究结果表明,多特征融合方法能有效解决遮挡、颜色相近、形变等复杂场景下的长时间目标跟踪问题.
目标跟踪、多特征融合、方向梯度直方图、纹理特征、标签库、置信度、复杂场景
57
TP391(计算技术、计算机技术)
住建部科技项目;徐州工程学院校级科研项目
2021-06-04(万方平台首次上网日期,不代表论文的发表时间)
共10页
217-226