基于填充先验约束的矩阵分解算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13232/j.cnki.jnju.2021.02.004

基于填充先验约束的矩阵分解算法

引用
尽管现有的社会推荐方法,特别是基于矩阵分解的社会推荐方法,取得了一定的推荐效果,但这些方法使用评分数据空间的用户偏好去约束社交关系数据空间的用户偏好,而这两种用户偏好却处于不同的数据空间,这限制了推荐模型的准确性.为解决这个问题,提出一种使用填充数据的偏好来约束评分数据偏好的学习过程的方法.该方法首先设计一个算法生成填充数据,然后,在概率矩阵分解的过程中约束填充数据偏好的先验分布服从评分数据偏好的先验分布.在四个真实数据集(TrustFilm,Ciao,MovieLens 1m和Jester)上测试的结果表明,提出方法的推荐效果比现有的代表性方法都要好,为概率矩阵分解模型中先验约束的研究提供了新思路.

推荐系统、协同过滤、数据稀疏性、社会推荐、概率矩阵分解、填充数据、用户偏好、先验约束

57

TP39(计算技术、计算机技术)

国家自然科学基金;江苏省自然科学基金

2021-06-04(万方平台首次上网日期,不代表论文的发表时间)

共11页

197-207

相关文献
评论
暂无封面信息
查看本期封面目录

南京大学学报(自然科学)

0469-5097

32-1169/N

57

2021,57(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn