分数阶对流——弥散方程的数值求解
对严格的时间分数阶对流--弥散方程和严格的空间分数阶对流--弥散方程分别建立了差分格式,并用所建立的两个差分格式对同一理想算例进行了求解.通过对分数阶导数取不同的参数值,得到一系列结果,分析了不同分数阶导数描述的反常扩散现象及其变化规律,并和传统的整数阶对流--弥散方程的求解结果进行了对比.当时间分数阶对流--弥散方程和空间分数阶对流--弥散方程的分数阶导数的参数分别取整数值时,时间分数阶对流--弥散方程、空间分数阶对流--弥散方程和传统整数阶对流--弥散方程的计算结果相同,表明本文提出的对时间分数阶对流--弥散方程和空间对流--弥散方程数值求解方法是可行的,且整数阶对流--弥散方程是分数阶对流--弥散方程的特殊情况.和正常扩散相比,时间分数阶对流--弥散方程中分数阶导数的参数值越小,溶质扩散得越慢,表现为拖尾分布:空间分数阶对流--弥散方程中分数阶导数的参数值越小,溶质扩散得越快,表明空间的非局域性相关性越强.
分数阶对流--弥散方程、反常扩散、时空相关性、数值求解
43
P641.2(水文地质学与工程地质学)
国家自然科学基金40672160
2008-05-12(万方平台首次上网日期,不代表论文的发表时间)
共6页
441-446