10.3969/j.issn.0469-5097.2007.01.018
利用函数值信息的修正多步拟牛顿法
拟牛顿方法在无约束优化中起着核心的作用.一般的拟牛顿方法是在每一步的迭代中,利用上一步产生的梯度信息,建立一个拟牛顿方程,进而求得目标函数Hessian阵的近似.多步拟牛顿法则是利用前m(m≥0)步的梯度信息,通过插值多项式建立一个扩展的拟牛顿方程.这两种方法的共同缺点是没有利用已知的函数值信息.本文在标准多步拟牛顿法基础上,充分利用函数值信息,构造出一个修正的带有向量参数的多步拟牛顿方程,该修正方程的多步拟牛顿法保持了较好的正定性和局部收敛性,且效率较高.数值实验也表明这个修正的算法在解决中,高维问题中比标准的多步拟牛顿方法有着更好的数值效果.
无约束优化、拟牛顿方程、多步拟牛顿方法
24
O241(计算数学)
2007-12-17(万方平台首次上网日期,不代表论文的发表时间)
共9页
142-150