基于改进ORB-SLAM2的单目视觉算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-3872.2023.13.005

基于改进ORB-SLAM2的单目视觉算法

引用
[目的]视觉SLAM算法受光照强弱或低纹理等场景的影响,导致产生特征提取鲁棒性差、位姿计算精度低等问题,为解决上述问题展开针对性研究.[方法]研究团队提出基于改进ORB-SLAM2的SuperPoint-SLAM算法模型,将ORB-SLAM中的特征匹配模块替换成基于SuperPoint网络的特征匹配,并据此进行特征跟踪、局部建图、关键帧识别、回环检测、位姿估计.将改进后SLAM算法与ORB-SLAM2算法分别在freiburg3_sitting_xyz与freiburg3_walking_xyz_validation两个数据集进行训练验证.[结果]SuperPoint-SLAM算法在动态环境中具有比ORB-SLAM2更高的定位精度,在特征点提取数量上提升近50%,轨迹误差减少0.008 m,而且在强弱光照条件下,基于SuperPoint网络的单目SLAM相较ORB-SLAM2有更强的鲁棒性.[结论]研究团队将利用Kinect2.0,基于SuperPoint与ORB-SLAM2,进一步进行稠密地图构建,实现机器人导航.

同步定位与建图、视觉定位、ORB-SLAM、SuperPoint、特征提取与匹配

54

TP391(计算技术、计算机技术)

2023-06-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

16-19

相关文献
评论
暂无封面信息
查看本期封面目录

南方农机

1672-3872

36-1239/TH

54

2023,54(13)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn