基于人工神经网络短期负荷预测的数据处理
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-4869.2008.03.011

基于人工神经网络短期负荷预测的数据处理

引用
科学合理的数据处理是提高短期电力负荷预测精度的最基本环节之一.利用软件滤波方法,自动平滑坏负荷数据;同时根据负荷的不同特性和规律,将输入数据进行有效分组,分别建立分组负荷预测模型:工作日负荷预测模型、周日负荷预测模型以及节日负荷预测模型,使预测模型不但具有所需样本数据少、模型简单、精度高等优点,同时又具有较强的泛化能力,从而提高负荷预测的效率和精度.通过对南昌供电公司的负荷数据进行具体计算,表明该方法是有效和可行的.

人工神经网络、短期负荷预测、软件滤波、数据处理、预测精度

27

TM714(输配电工程、电力网及电力系统)

南昌工程学院青年基金项目2006KJ018

2008-09-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

45-49,54

相关文献
评论
暂无封面信息
查看本期封面目录

南昌工程学院学报

1006-4869

36-1288/TV

27

2008,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn