基于数据挖掘算法的底板破坏深度预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11799/ce201706027

基于数据挖掘算法的底板破坏深度预测

引用
针对以往使用单一因素预测底板破坏深度误差较大的问题,基于开源数据挖掘工具Weka平台,以底板破坏因素为样本应用贝叶斯分类器、支持向量机、神经网络、决策树和随机森林模型实现对底板破坏深度数据的整理挖掘分析,从多因素角度出发完成对底板破坏深度的综合预测.平台应用结果表明,工作面斜长、埋深为破坏深度的主要影响因素;神经网络模型的节点错误率最低,决策树模型最高;神经网络和随机森林模型在详细的精度方面准确率达95%;总体分析对比神经网络预测效果最优,能够较好实现对煤矿底板破坏深度的预测.

数据挖掘、底板破坏深度、Weka平台、贝叶斯分类器、支持向量机、神经网络、决策树、随机森林

49

TD327.3(矿山压力与支护)

山东省自然科学基金2016ZRB019TW

2017-07-06(万方平台首次上网日期,不代表论文的发表时间)

共4页

92-95

相关文献
评论
暂无封面信息
查看本期封面目录

煤炭工程

1671-0959

11-4658/TD

49

2017,49(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn