基于多演化特征的社交网络链路预测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16451/j.cnki.issn1003-6059.202407003

基于多演化特征的社交网络链路预测算法

引用
社交网络链路预测旨在根据已知的网络信息预测未来的链接关系,在推荐系统和合著网络中具有重要作用.然而,现有链路预测算法往往忽视社交网络的多元演化特点,训练时间复杂度较高,限制其执行效率.针对上述问题,文中提出基于多演化特征的社交网络链路预测算法(Multi-evolutionary Features Based Link Prediction Algo-rithm for Social Network,MEF-LP).首先,设计一种简单高效的时间极限学习机模型,利用门控网络和极限学习机自编码器传递与聚合社交网络快照序列的时间信息.然后,构建多个深度极限学习机,对时间特征进行多角度映射,挖掘社交网络不同的演化特征,并最终融合成综合演化特征.最后,使用基于极限学习机的分类器完成链路预测.在6个真实社交网络上的实验表明,MEF-LP能合理学习社交网络的多演化特征,并获得较优的预测性能.

社交网络分析、链路预测、多元演化、网络快照、极限学习机

37

TP391(计算技术、计算机技术)

2024-08-28(万方平台首次上网日期,不代表论文的发表时间)

共16页

597-612

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

37

2024,37(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn