基于AdaBelief的Heavy-Ball动量方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16451/j.cnki.issn1003-6059.202202002

基于AdaBelief的Heavy-Ball动量方法

引用
同时使用动量和自适应步长技巧的自适应矩估计(Adaptive Moment Estimation,Adam)型算法广泛应用于深度学习中.针对此方法不能同时在理论和实验上达到最优这一问题,文中结合AdaBelief灵活调整步长提高实验性能的技巧,以及仅采用指数移动平均(Exponential Moving Average,EMA)策略调整步长的Heavy-Ball动量方法加速收敛的优点,提出基于AdaBelief的Heavy-Ball动量方法.借鉴AdaBelief和Heavy-Ball动量方法收敛性分析的技巧,巧妙选取时变步长、动量系数,并利用添加动量项和自适应矩阵的方法,证明文中方法对于非光滑一般凸优化问题具有最优的个体收敛速率.最后,在凸优化问题和深度神经网络上的实验验证理论分析的正确性,并且证实文中方法可在理论上达到最优收敛性的同时提高性能.

AdaBelief;Heavy-Ball动量方法;个体收敛速率;深度神经网络

35

TP181(自动化基础理论)

国家自然科学基金No.62076252

2022-03-23(万方平台首次上网日期,不代表论文的发表时间)

共10页

106-115

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

35

2022,35(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn