基于残差边卷积的3D点云分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16451/j.cnki.issn1003-6059.202109006

基于残差边卷积的3D点云分类算法

引用
3D点云的不规则性与无序性使点云的分类仍具有挑战性.针对上述问题,文中设计基于残差边卷积的3D点云分类算法,可直接从点云学习到具有区分度的形状描述子,用于目标分类.首先,设计具有残差学习的边卷积模块,用于点云的特征提取.通过K近邻算法,该边卷积模块在输入点云上构建局部图,使用卷积及最大池化进行局部特征的提取与聚合.然后,通过多层感知器从原始点特征中提取全局特征,并以残差学习的方式与局部特征结合.最后,以该卷积块为基本单元,构建深度神经卷积网络,实现3D点云的分类.文中方法较全面地考虑点云局部特征与全局特征的有机结合,网络具有更深层次的结构,最终得到的形状描述子更抽象,具有更高的区分度.在具有挑战性的ModelNet40、ScanObjectNN数据集上的实验证实文中方法的分类性能较优.

深度学习;卷积神经网络;分类;点云

34

TP391(计算技术、计算机技术)

国家自然科学基金项目No,62032022,62006215,61876103

2021-10-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

836-843

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

34

2021,34(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn