10.16451/j.cnki.issn1003-6059.202109006
基于残差边卷积的3D点云分类算法
3D点云的不规则性与无序性使点云的分类仍具有挑战性.针对上述问题,文中设计基于残差边卷积的3D点云分类算法,可直接从点云学习到具有区分度的形状描述子,用于目标分类.首先,设计具有残差学习的边卷积模块,用于点云的特征提取.通过K近邻算法,该边卷积模块在输入点云上构建局部图,使用卷积及最大池化进行局部特征的提取与聚合.然后,通过多层感知器从原始点特征中提取全局特征,并以残差学习的方式与局部特征结合.最后,以该卷积块为基本单元,构建深度神经卷积网络,实现3D点云的分类.文中方法较全面地考虑点云局部特征与全局特征的有机结合,网络具有更深层次的结构,最终得到的形状描述子更抽象,具有更高的区分度.在具有挑战性的ModelNet40、ScanObjectNN数据集上的实验证实文中方法的分类性能较优.
深度学习;卷积神经网络;分类;点云
34
TP391(计算技术、计算机技术)
国家自然科学基金项目No,62032022,62006215,61876103
2021-10-15(万方平台首次上网日期,不代表论文的发表时间)
共8页
836-843