基于DenseNet的复杂交通场景语义分割方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16451/j.cnki.issn1003-6059.201905010

基于DenseNet的复杂交通场景语义分割方法

引用
针对交通场景语义分割方法存在参数量较大、计算效率较低、精度不足等问题,文中提出基于全卷积化DenseNet的多尺度端到端语义分割模型.首先,构建一种含混合空洞卷积的密集连接模块,同时沿通道维度级联各模块,用于提取图像特征.然后,采集多尺度视觉信息并以此作为监督信号回传至原通道中.最后,通过双线性插值法获得预测输出.在CityScapes数据集上的测试实验表明,文中方法对复杂交通场景的解析能力较强,预测精度和分割效率较高.

交通场景、图像语义分割、空洞卷积、多尺度特征融合

32

TP391(计算技术、计算机技术)

国家自然科学基金青年科学基金项目61702176;湖南省自然科学基金项目2017JJ3038

2019-06-27(万方平台首次上网日期,不代表论文的发表时间)

共9页

472-480

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

32

2019,32(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn