基于改进损失函数的多阶段行人属性识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16451/j.cnki.issn1003-6059.201812003

基于改进损失函数的多阶段行人属性识别方法

引用
大量研究工作通过挖掘属性间的正相关性提高视频监控场景下的行人属性识别性能,但对属性间负相关性的探索仍存在不足.为此,文中基于深度学习理论提出多阶段行人属性识别方法,同时探索属性间的正、负相关性.第一阶段计算每个属性在训练过程中的损失值和正确率.第二阶段为平均损失较大且正确率较小的属性单独建立一个网络分支,其它属性仍保留在原分支上,然后两个分支联合预测所有属性.第三阶段新建两个网络分支,结构与第二阶段的分支相同,优化新分支的参数,使其属性识别性能优于第二阶段.最终使用第三阶段的模型进行属性预测.此外,构建增大正负样本差异的改进损失函数,应用于三个阶段的训练,进一步提升模型性能.在两个行人属性识别数据集RAP和PETA上的实验表明,文中方法性能较优.

视频监控、行人属性、深度学习、多阶段、损失函数

31

TP391.4(计算技术、计算机技术)

国家自然科学基金项目61671018,61472002,61502006

2019-02-20(万方平台首次上网日期,不代表论文的发表时间)

共11页

1085-1095

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

31

2018,31(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn