显著特征融合的主颜色聚类分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16451/j.cnki.issn1003-6059.201606002

显著特征融合的主颜色聚类分割算法

引用
针对颜色密度聚类分割模型容易产生误分割的问题,提出基于视觉显著性调节的主颜色聚类分割算法.首先,根据空间颜色信息和Mean-shift算法平滑结果分别计算图像的全局显著特征和区域显著特征,并融合2类显著特征作为特征空间聚类的约束项.然后,采用核密度估计方法计算图像主颜色作为初始类,并将显著特征作为调节因子进行聚类分割.最后,进行区域合并.在标准的分割图像库上进行实验并与多种算法对比,结果表明,文中算法具有更高的区域轮廓准确度,并且有效利用图像显著特征,降低密度聚类形成的区域不一致性,提高像素聚类的精度和分割的鲁棒性.

彩色图像分割、显著特征、显著性融合、主颜色聚类

29

TP391.41(计算技术、计算机技术)

国家自然科学基金重点项目U1261206;国家自然科学基金项目61572173;河南省科技计划项目162102210062;河南省教育厅高等学校重点科研项目15A520072;河南理工大学博士基金项目B2016-37;Key Program of National Natural Science Foundation of ChinaU1261206;National Natural Science Foundation of China61572173;Science and Technology Planning Project of Henan Province162102210062;Key Scientific Research Project of Educational Department of Henan Province15A520072;Doctoral Fund of Henan Polytechnic UniversityB2016-37

2016-08-31(万方平台首次上网日期,不代表论文的发表时间)

共12页

492-503

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

29

2016,29(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn