可区分惩罚控制竞争学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-6059.2014.05.006

可区分惩罚控制竞争学习算法

引用
竞争学习在聚类分析中是一种重要的学习方式,次胜者惩罚竞争学习( RPCL)算法虽能自动选择合理的类别数,但其性能对学习率和惩罚率的取值较敏感,其变种惩罚控制竞争学习( RPCCL)算法将所有的竞争单元当成冗余单元进行惩罚也不合理。文中提出一种可区分惩罚控制竞争学习算法( DRPCCL)。算法中获胜单元的学习率会在迭代过程中自适应调整。同时该算法使用一种可区分惩罚控制机制来区分竞争单元中的冗余单元和正确单元,给予冗余单元较重惩罚,正确单元轻微惩罚,使得算法能自动确定正确类别数和中心点位置。最后通过实验对比分析证明DRPCCL算法的聚类效果比RPCL算法和RPCCL算法更准确。

聚类分析、竞争、胜者惩罚竞争学习(RPCL)、可区分的惩罚控制机制

TP181(自动化基础理论)

国家自然科学基金项目61175026;国家“十二五”科技支撑计划项目2012BAF12B11;科技部国际科技合作专项项目2013DFG12810;浙江省自然科学基金重大项目D1080807;浙江省国际科技合作专项项目2013C24027

2014-07-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

426-434

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

2014,(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn