基于词典学习和稀疏表示的超分辨率方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-6059.2010.03.007

基于词典学习和稀疏表示的超分辨率方法

引用
近年来,从大规模数据集中提取过完备词典,并使用稀疏表示在图像去噪、图像去马赛克和图像修复中有着较广泛应用.然而,这一技术不能直接用于处理具有异构特点的低分辨率/高分辨率图像块对,以及相应的图像超分辨率重构.要解决这一问题,文中提出一种求解同时满足两个过完备词典(低分辨率图像块词典和高分辨率图像块词典)下的相同稀疏表示的方法,并利用它们实现图像稀疏表示的超分辨率重建.为了进一步提高彩色图像的超分辨率效果,还提出基于超分辨率亮度信息的UV色度超分辨率重构.实验结果表明文中方法无论在视觉效果还是均方根误差上都获得更好结果.

超分辨率、稀疏表示、词典学习

23

TP751.1(遥感技术)

国家自然科学基金项目60975044,60635030;国家863计划项目2007AA01Z176

2010-09-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

335-340

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

23

2010,23(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn