基于模型似然的超1-依赖贝叶斯分类器集成方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-6059.2007.06.001

基于模型似然的超1-依赖贝叶斯分类器集成方法

引用
平均1-依赖贝叶斯分类器(AODE)是一种重要的贝叶斯学习方法,但由于其平等看待各个超1-依赖贝叶斯分类器输出,可能对最终结果造成不好影响.本文将每个超1-依赖贝叶斯分类器看作一个产生式模型,并通过模型似然度量超1-依赖贝叶斯分类器的性能,进而提出基于模型似然的超1-依赖贝叶斯分类器集成方法(LODE).与AODE相比,LODE仅增加较少计算量却显著提高分类性能.

机器学习、数据挖掘、贝叶斯学习、朴素贝叶斯、集成学习

20

TP183(自动化基础理论)

国家自然科学基金60505013,60635030;江苏省自然科学基金BK2005412

2009-08-19(万方平台首次上网日期,不代表论文的发表时间)

共5页

727-731

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

20

2007,20(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn