一种共享经验元组的多agent协同强化学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-6059.2005.02.018

一种共享经验元组的多agent协同强化学习算法

引用
Q学习算法是一种最受欢迎的模型无关强化学习算法.本文通过对Q学习算法进行合适的扩充,提出了一种适合于多agent协作团队的共享经验元组的多agent协同强化学习算法,其中采用一种新的状态行为的知识表示方法使得状态行为空间得到缩减,采用相似性变换和经验元组的共享使得学习的效率得到提高.最后将该算法应用于猎人捕物问题域.实验结果表明该算法能够加快多个猎人合作抓捕猎物的进程,有利于协作任务的成功执行,并能提高多agent协作团队的协作效率,因此该算法是有效的.

多agent学习、强化学习、Q学习、状态行为空间、协作团队

18

TP391(计算技术、计算机技术)

2009-08-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

234-239

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

18

2005,18(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn