提高超大规模SVM训练计算速度的研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-6059.2003.01.009

提高超大规模SVM训练计算速度的研究

引用
近年来用支持向量机(Support Vector Machine)解决大样本问题的尝试日渐增多.限制SVM在大样本问题中应用的一个关键因素是SVM训练所引出的超大规模二次规划问题无法由标准的二次规划方法所解决.SMO算法(Sequential Minimal Optimization)是一种有发展前途的大规模SVM训练算法,我们用块算法的思想对其进行了改进,并称改进后的算法为分块SMO算法(CSMO).新算法对于带有小支持向量集的超大样本问题在速度方面具有明显的优势.

支持向量机、序列最小优化、分块、二次规划

16

TP391(计算技术、计算机技术)

国家自然科学基金资助项目69885044

2009-08-19(万方平台首次上网日期,不代表论文的发表时间)

共4页

46-49

相关文献
评论
暂无封面信息
查看本期封面目录

模式识别与人工智能

1003-6059

34-1089/TP

16

2003,16(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn