基于无人机多光谱影像的冬小麦倒伏提取适宜空间分辨率研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.7606/j.issn.1009-1041.2021.02.16

基于无人机多光谱影像的冬小麦倒伏提取适宜空间分辨率研究

引用
为了解无人机图像空间分辨率对倒伏小麦提取精度的影响,选取2019年6月9日冀南地区倒伏小麦农田为研究区,采用最大似然法、人工神经网络、支持向量机和随机森林四种分类方法,以倒伏小麦分类面积和空间一致性为指标,对不同空间分辨率下小麦倒伏的提取精度进行了比较.结果表明,最大似然法存在严重的错分现象,人工神经网络、随机森林和支持向量机的总体分类结果较好,其中人工神经网络对倒伏面积提取的结果最准确;随着像元尺寸的增大,倒伏小麦分类面积相对误差变化趋势缓慢,但像元尺寸大于40 cm时,分类结果与实际倒伏区域的空间一致性迅速降低.综合考虑无人机图像数据量、获取时间和倒伏小麦提取精度,本研究认为20~40 cm是提取冬小麦倒伏面积较为适宜的空间分辨率范围.

无人机遥感、倒伏、不同空间分辨率、多光谱、小麦

41

S512.1;S311(禾谷类作物)

河南省高等学校重点科研项目;河南师范大学国家级项目培育基金项目

2021-05-08(万方平台首次上网日期,不代表论文的发表时间)

共8页

254-261

相关文献
评论
暂无封面信息
查看本期封面目录

麦类作物学报

1009-1041

61-1359/S

41

2021,41(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn