基于可变时序移位Transformer-LSTM的集成学习矿压预测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.18142

基于可变时序移位Transformer-LSTM的集成学习矿压预测方法

引用
现有的矿压预测模型多为依赖固定长度时序序列特征的单一预测模型,难以准确捕捉矿压时序数据的复合特征,影响矿压预测的准确度.针对该问题,提出一种基于可变时序移位Transformer-长短时记忆(LSTM)的集成学习矿压预测方法.基于拉依达准则和拉格朗日插值法,剔除矿压监测数据中的异常值,插入缺失值,并进行归一化预处理;提出可变时序移位策略,划分不同尺度的矿压时序数据,避免固定长度时序序列可能存在的数据偏移问题;在此基础上,构建基于Transformer-LSTM的集成学习矿压预测模型,通过结合注意力机制和准确的时序特征表示能力,多层次捕捉矿压变化规律的动态特征,采用集成学习的投票算法,联合预测矿压数据,克服单一预测模型的局限性.实验结果表明:采用集成学习的投票算法可降低矿压预测平均绝对误差(MAE)和均方根误差(RMSE)的波动性,有效减小不同尺度特征序列对矿压预测结果的敏感性影响;Transformer-LSTM模型在 2个综采工作面顶板矿压数据集上预测结果的MAE较Transformer模型分别提高了 8.9%和 9.5%,RMSE分别提高了12.7%和16.5%,且高于反向传播(BP)神经网络模型和LSTM模型,有效提升了矿压预测准确度.

矿压预测、可变时序移位、Transformer-LSTM模型、集成学习、投票算法

49

TD323(矿山压力与支护)

2023-08-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

92-98

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

49

2023,49(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn