基于改进YOLOv4的综采工作面目标检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2022070080

基于改进YOLOv4的综采工作面目标检测

引用
综采工作面关键设备及人员的准确检测是实现煤炭智能化开采信息感知的重要环节.传统目标检测算法通过人工提取特征实现目标检测,易受环境影响,不具有普适性.基于卷积神经网络的目标检测算法可以自适应地提取深层信息,但复杂环境下检测精度不高、网络参数多、计算量大.针对上述问题,提出了一种改进YOLOv4模型,并将其应用于综采工作面目标检测.为准确从综采工作面复杂环境中检测到 目标,在CSPDarkNet53网络中融入残差自注意力模块,保证参数共享及高效局部信息聚合的同时增强全局信息获取能力,提升图像关键目标特征表达能力,进而提高目标检测精度;为适应综采工作面目标检测高效性需求,引入深度可分离卷积替代传统卷积,以减少模型参数量和计算量,有利于模型的工业部署,提高目标检测速度.实验结果表明,与YOLOv3、CenterNet及YOLOv4模型相比,改进YOLOv4模型平均精度均值最高,达92.59%,且在参数量、计算量、检测精度上具有更优的平衡,可在煤尘干扰、光照不均、目标运动等复杂环境下对目标准确检测.

综采工作面、目标检测、YOLOv4、残差自注意力、深度可分离卷积

49

TD67(矿山电工)

河南省科技攻关计划项目212102210390

2023-03-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

70-76

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP_x000d_

49

2023,49(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn