基于深度网络的滚动轴承智能故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2022010008

基于深度网络的滚动轴承智能故障诊断

引用
针对变工况环境中滚动轴承的源域与目标域数据分布不同及目标域样本不含标签的问题,提出一种基于深度自适应迁移学习网络(DATLN)的滚动轴承故障诊断模型.首先,搭建领域共享特征提取网络,采用多尺度卷积神经网络(MSCNN)抑制噪声的干扰,进而有效提取振动信号中蕴含的局部故障信息;其次,结合双向长短时记忆网络(BiLSTM)进一步学习局部故障信息中的时间特征;最后,引入迁移学习,以域对抗(DA)训练结合自适应联合分布(AJD)度量构建域自适应模块,通过最大化域分类损失和最小化AJD距离,实现源域与目标域特征样本对齐.在开源CWRU数据集与机械故障平台实测数据集上分别进行抗噪实验和迁移实验.抗噪实验表明:① 在无噪声环境下,MSCNN-BiLSTM网络的识别准确率均达到99%以上,说明其具有较好的特征提取能力;②MSCNN-BiLSTM,LeNet-5,MSCNN和BiLSTM四种网络的识别准确率随着噪声强度的增强而降低;③在3,5,10 dB噪声环境下,MSCNN-BiLSTM网络的平均识别准确率比LeNet-5,MSCNN和BiLSTM网络的平均识别准确率均高,说明MSCNN-BiLSTM网络具有较好的抗噪声干扰性能;④MSCNN-BiLSTM网络在无噪声环境和3 dB噪声环境下,均最先达到收敛且波动较小.迁移实验表明:①在无标签目标域数据集上,DA+AJD方法的平均识别准确率为97.36%,均高于Baseline,迁移成分分析(TCA),域对抗神经网络(DANN)的识别准确率;② 在测试集混淆矩阵上,DA+AJD方法仅有1个样本被错误识别,表明基于域适应的DA+AJD方法具备更好的故障迁移诊断性能;③利用t-SNE算法对处理后的源域与目标域特征样本进行可视化,DA+AJD方法只有少量目标域的滚动体故障和外圈故障特征样本被错误对齐到源域的内圈故障特征样本区域,说明DA+AJD方法可有效减少源域与目标域的边缘分布和条件分布差异,进而达到更好的特征样本对齐效果.

滚动轴承、智能故障诊断、多尺度卷积神经网络、无标签目标域样本、深度学习、迁移学习、自适应联合分布

48

TD712(矿山安全与劳动保护)

国家自然科学基金;湖北省水电动机械设计与维修重点实验室开放基金

2022-05-07(万方平台首次上网日期,不代表论文的发表时间)

共11页

78-88

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

48

2022,48(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn