基于随机森林算法的煤自燃温度预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.17700

基于随机森林算法的煤自燃温度预测模型研究

引用
针对传统煤自燃温度预测模型预测精度较差、基于支持向量机(SVM)的预测模型对参数的选取要求较高和基于神经网络的预测模型测试时易出现过拟合的问题,提出了一种基于随机森林算法的煤自燃温度预测模型.利用煤自燃程序升温实验选取O2浓度、CO浓度、C2H4浓度、CO/△O2比值、C2H4/C2H6比值作为煤自燃预警指标数据,并对指标数据进行处理,将数据分为学习集和测试集;对学习集抽样形成决策树并按决策树最优特征分裂形成随机森林;采用均方误差值和判定系数(R2)优化随机森林算法的参数,进而构建随机森林模型;将测试集数据输入已训练好的随机森林模型,得到煤自燃温度预测结果.模型对比结果表明:与基于粒子群优化反向传播(PSO-BP)神经网络算法和基于SVM算法的煤自燃温度预测模型相比,随机森林测试阶段的R2为0.869 7,PSO-BP测试阶段的R2为0.783 6,SVM测试阶段的R2为0.835 0,说明基于随机森林算法的煤自燃温度预测模型能够较为准确地对煤自燃温度进行预测,具有较强的鲁棒性和普适性,解决了基于PSO-BP神经网络算法的煤自燃温度预测模型和基于SVM算法的煤自燃温度预测模型容易出现过拟合的问题.

煤自燃温度预测、随机森林、指标气体、煤自燃预警指标

47

TD752(矿山安全与劳动保护)

国家自然科学基金51674191

2021-06-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

58-64

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

47

2021,47(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn