自适应局部迭代滤波在齿轮故障识别中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2020070070

自适应局部迭代滤波在齿轮故障识别中的应用

引用
针对齿轮实测信号因受噪声干扰而不能准确反映故障特征的问题,提出将自适应局部迭代滤波应用到齿轮故障识别中,与样本熵、灰色关联度相结合实现齿轮的故障识别.利用自适应局部迭代滤波将齿轮非平稳信号分解为有限个平稳的本质模态函数,通过计算各本质模态函数的样本熵,发现以齿轮系统的转频信号对应的本质模态函数的样本熵为界,前几个本质模态函数的样本熵能表征不同故障类型的特征;计算齿轮系统正常、齿面轻度磨损、齿面中度磨损和断齿4种工况下多个训练样本的样本熵的平均值,将其作为对应工况标准故障模式的参考值;计算待检测样本的样本熵与各状态下训练样本的样本熵平均值之间的灰色关联度,与待识别样本灰色关联度最大的标准故障模式即被认为是待识别样本的故障类型.实例分析结果表明,通过自适应迭代滤波能有效抑制模态混叠现象,发现明显的齿轮转频信号,而采用集合经验模式分解(EEMD)方法进行信号分解后,模态混叠现象比较明显,且在EEMD的分解结果中基本看不出齿轮的转频分量;4种工况的样本熵曲线形状存在明显差异,说明样本熵能有效表征齿轮故障特征的变化;灰色关联度方法能有效地将4种不同的故障类型进行分类识别,分类识别性能优于BP神经网络,对小样本数据具有较好的分类识别能力.

齿轮故障识别、自适应局部迭代滤波、样本熵、灰色关联度、转频信号

47

TD67(矿山电工)

国家自然科学基金资助项目;云南省地方本科高校基础研究联合专项重点项目;云南省高校重点实验室建设计划资助项目

2021-03-11(万方平台首次上网日期,不代表论文的发表时间)

共8页

74-80,99

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

47

2021,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn