基于强化学习的煤矸石分拣机械臂智能控制算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2020080047

基于强化学习的煤矸石分拣机械臂智能控制算法研究

引用
针对传统煤矸石分拣机械臂控制算法如抓取函数法、基于费拉里法的动态目标抓取算法等依赖于精确的环境模型、且控制过程缺乏自适应性,传统深度确定性策略梯度(DDPG)等智能控制算法存在输出动作过大及稀疏奖励容易被淹没等问题,对传统DDPG算法中的神经网络结构和奖励函数进行了改进,提出了一种适合处理六自由度煤矸石分拣机械臂的基于强化学习的改进DDPG算法.煤矸石进入机械臂工作空间后,改进DDPG算法可根据相应传感器返回的煤矸石位置及机械臂状态进行决策,并向相应运动控制器输出一组关节角状态控制量,根据煤矸石位置及关节角状态控制量控制机械臂运动,使机械臂运动到煤矸石附近,实现煤矸石分拣.仿真实验结果表明:改进DDPG算法相较于传统DDPG算法具有无模型通用性强及在与环境交互中可自适应学习抓取姿态的优势,可率先收敛于探索过程中所遇的最大奖励值,利用改进DDPG算法控制的机械臂所学策略泛化性更好、输出的关节角状态控制量更小、煤矸石分拣效率更高.

选煤、煤矸石分拣、分拣机器人、机械臂、关节角状态控制、强化学习、奖励函数、DDPG算法

47

TD67(矿山电工)

山东省自然科学基金项目ZR2018MEE036

2021-03-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

36-42

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

47

2021,47(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn