10.13272/j.issn.1671-251x.17540
煤矿井下行人检测算法
针对井下光照不均匀、行人特征与背景的相似度高等导致基于计算机视觉的行人检测技术在井下应用面临很大挑战的问题,提出采用Faster区域卷积神经网络(RCNN)进行煤矿井下行人检测.Faster RCNN行人检测算法采用区域建议网络(RPN)生成候选区域,RPN与Fast RCNN共享卷积层,以提高网络训练和检测速度;在图像特征提取过程中采用动态自适应池化方法对不同池化域进行自适应池化操作,提高了检测准确性.实验结果表明,该算法对于不同环境下图像中的行人均具有较好的检测效果.
井下行人检测、深度学习、区域卷积神经网络、区域建议网络、共享卷积层、动态自适应池化
46
TD76(矿山安全与劳动保护)
国家重点研发计划资助项目2018YFC0808302
2020-05-07(万方平台首次上网日期,不代表论文的发表时间)
共5页
80-84