基于Q-learning模型的智能化放顶煤控制策略
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2019110001

基于Q-learning模型的智能化放顶煤控制策略

引用
传统的综放工作面放顶煤控制存在顶煤采出率低、出煤含矸率高等问题,而现有智能决策方法又存在建模困难、学习样本难以获取等障碍.针对上述问题,在液压支架放煤口动作决策过程中引入强化学习思想,提出一种基于Q-learning模型的智能化放顶煤控制策略.以最大化放煤效益为主要目标,结合顶煤放出体实时状态特征及顶煤动态赋存状态,采用基于Q-learning的放顶煤动态决策算法,在线生成多放煤口实时动作策略,优化多放煤口群组协同放煤过程,合理平衡顶煤采出率、出煤含矸率的关系.仿真和对比分析结果表明,该控制策略的顶煤平均采出率为91.24%,比传统“见矸关窗”的放煤方法提高约15.8%;平均全局奖赏值为685,比传统放煤方法提高约11.2%.该控制策略可显著减少混矸、夹矸等现象对放煤过程的影响,提高顶煤放出效益,减少煤炭资源浪费.

放顶煤、煤矸分离、强化学习、智能放煤控制、群组放煤、Q-learning模型

46

TD823.97(矿山开采)

国家重点研发计划项目;河南省高等学校重点科研项目;河南省科技项目

2020-05-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

72-79

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

46

2020,46(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn