基于LLE-FOA-BP模型的煤与瓦斯突出强度预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2019010054

基于LLE-FOA-BP模型的煤与瓦斯突出强度预测

引用
针对目前煤与瓦斯突出强度预测精度低、稳定性差及训练速度慢等问题,提出了一种基于局部线性嵌入法-果蝇优化算法-BP神经网络(LLE-FOA-BP)模型的煤与瓦斯突出强度预测方法.借助LLE算法的非线性数据特征提取优势,提取煤与瓦斯突出影响因素原始数据的本质特征,形成重构有效因子,降低数据间的冗余信息及噪声;利用FOA算法较强的全局寻优能力优化BP神经网络的权值和阈值,避免陷入局部极小,提高参数寻优效率;将重构有效因子输入优化后的BP神经网络进行训练,实现煤与瓦斯突出强度快速、准确预测.测试结果表明,LLE-FOA-BP模型的平均相对误差为8.06%,相对误差的方差为3.69,经过24次迭代训练就达到108的训练精度,能够在保证预测精度的基础上,提高鲁棒性和学习效率.

煤与瓦斯突出强度预测、局部线性嵌入、果蝇算法、BP神经网络、大数据处理

45

TD713(矿山安全与劳动保护)

贵州省科技计划项目黔科合支撑[2018]2789

2019-11-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

68-73

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

45

2019,45(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn