一种矿井主要通风机故障诊断系统
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2017.06.016

一种矿井主要通风机故障诊断系统

引用
采用经极限学习机训练的神经网络建立故障诊断模型,基于该模型设计了一种矿井主要通风机故障诊断系统,介绍了该系统的软硬件设计方案.测试结果表明,该系统中极限学习机算法运行时间仅为0.031 3 s,故障诊断准确率不低于97.35%,其实时性和准确性优于基于BP神经网络、ELMAN神经网络、经支持向量机训练的神经网络等模型的主要通风机故障诊断系统.

煤炭开采、主要通风机、故障监测、故障诊断、极限学习机

43

TD635(矿山电工)

国家自然科学基金资助项目61303183

2017-07-13(万方平台首次上网日期,不代表论文的发表时间)

共3页

69-71

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

43

2017,43(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn