基于改进BP神经网络的矿用通风机故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13272/j.issn.1671-251x.2017.04.009

基于改进BP神经网络的矿用通风机故障诊断

引用
针对矿用通风机故障与征兆对应关系复杂的特点,提出一种用动态适应布谷鸟搜索算法优化BP神经网络并进行故障诊断的方法.利用动态适应布谷鸟搜索算法的全局搜索能力,求解神经网络的最优初始参数;然后对BP神经网络进行学习训练,得到最终的故障诊断模型.实例分析结果表明,该方法能有效地进行矿用通风机故障诊断,且具有收敛速度快、精度高的特点,对测试样本的诊断准确率达到了92.5%.

矿用通风机、故障诊断、动态适应布谷鸟搜索算法、BP神经网络

43

TD635(矿山电工)

国家自然科学基金项目61304080

2017-05-16(万方平台首次上网日期,不代表论文的发表时间)

共5页

37-41

相关文献
评论
暂无封面信息
查看本期封面目录

工矿自动化

1671-251X

32-1627/TP

43

2017,43(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn